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1    Introduction 

Let V be a three-dimensional real inner product space, and let R denote the real 
numbers or scalars. Let Sym denote the linear space of symmetric (second-order) 
tensors on V. Let U be a nonempty subset of Sym which is invariant in the sense 
that A G U iff QAQT G U for each orthogonal tensor Q. Then a scalar-valued 
isotropic function on U is a function ij) :U —> R with the property ^(QAQ ) = tp(A) 
for each A EU and each orthogonal tensor Q. A tensor-valued isotropic function on 
U is a function <fr : U —> Sym with the property 3>(QAQT) = Q$(A)QT for each 
A G U and each orthogonal tensor Q. For any symmetric tensor A, let #A G {1,2,3} 
denote the number of distinct eigenvalues of A. Let 

Symn := {A G Sym :*A = n}        (n = 1,2,3). (1.1) 

In particular, Sym-^ is the one-dimensional subspace of all spherical tensors al, a G R. 
Each set Symn is invariant, and Sym = Sym1 U Sym2 U Sym3. Let 

Un:=Kf]Symn = {AeK:*A = n}        (n = 1,2,3). (1.2) 

Then each set Un is invariant, and U = Ux U U2 U W3. A scalar-valued or tensor-valued 
function on £/ is isotropic iff its restriction to each of the invariant subsets Un is 
isotropic. 

According to a well-known theorem of Rivlin and Ericksen [1, §29, §39], a function 
$ : U —> Sym is isotropic iff there are scalar-valued isotropic functions a,ß,j on U 
such that 

*(A) = a(A)I + /?(A)A + 7(A)A2, (1.3) 

where I denotes the identity tensor. Since the publication of Rivlin and Ericksen's 
classic paper in 1955, various proofs of this representation theorem have appeared in 
the mechanics literature; cf. Serrin [2], [3, §59], Truesdell &: Noll [4, §12], Wang & 
Truesdell [5, §111.2], Gurtin [6, §37], and Wang [7].1 The proofs in [l]-[7] have the 
following features in common. The authors establish (1.3) by showing that it holds 
on each of the subsets U^U^U^. In particular, they show that a,/?,7 are uniquely 
determined by $ onUz. They set 

7(A) = 0,  VAGZY2, (1.4) 

and show that there are unique functions a, ß on U2 satisfying (1.3) and (1.4). Finally, 
they set 

0(A) = 7(A) =0,  VAeWl9 (1.5) 

and show that there is a unique function a on Ux satisfying (1.3) and (1.5). Isotropy 
of the coefficients is established in one of two ways: either by verifying indirectly that 

1 Applications of (1.3) to the response functions of isotropic materials are discussed in [l]-[6]. 



7(QAQT) = 7(A), for example, without actually solving for the coefficients (cf. [4]- 
[7]), or by deriving explicit isotropic formulas for the coefficients. The latter approach 
was used by Rivlin and Ericksen [1] (cf. also Serrin [2, 3]), and their formulas for the 
case #A = 3 are of interest here. 

Let a1,a2,az denote the eigenvalues of the symmetric tensor A, let IA,IIA,IIIA 

denote the principal invariants of A , and let IIA,IIIA denote the second and third 
moments of A. Then (cf. Ericksen [8, §38]) 

JA = ax + a2 + a3 = tr A = A • I, 

IIA = axa2 + a2a3 + a^ = \{I£ - IIA), 
IIIA = a^as = det A = |/^ _ I/A JJA + lJHA , 

7/A = a2 + a2 + a3
2 = trA2:=A-A = ||A||2, 

mA = ai
3+G2

3
+a3 = trA3 = j^_3/A//A+37//A 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

Here ||A|| denotes the norm of A corresponding to the inner product A • B = tr (AB) 
on Sym. From (1.3) we obtain the following system of equations for a(A), /3(A), 7(A): 
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HA 

UA 

IIIA 

UA 
IIIA 

trA4 

a(A) 
0(A) 

1.7(A) 

tr*(A) 
tr(*(A)A) 
tr($(A)A2) 

(1.11) 

Let MA denote the coefficient matrix in (1.11). By the Cayley-Hamilton theorem, 

A3 = 7AA2 - IIAA + IIIAl. (1.12) 

On multiplying (1.12) by A and taking the trace, we obtain an expression for trA4 

which, together with (1.6)-(1.10), can be used to express detMA as a polynomial in 
either the principal moments, the principal invariants, or the eigenvalues of A. In 
particular, we find that det MA is just the cubic discriminant AA of the characteristic 
polynomial of A: 

detMA = AA   =   18/A/7A///A-4/A
3J//A + /A

2/IA
2-47/A

3-27/17, 

=   (ai-a2)
2(o2-a3)2(ö3-ai)2- (1.13) 

Since AA / 0 iff #A = 3, (1.11) has a unique solution for a(A),ß(A), 7(A) iff #A = 3, 
in which case Cramer's rule yields the explicit formulas (Rivlin and Ericksen [1, §29]) 

a(A)=detMi1)/AA,    /3(A) = det il42)/AA ,    7(A) = det Mi3)/AA ,      (1.14) 

where MA") denotes the matrix obtained by replacing the nth column of MA by the 
column vector on the right-hand side of (1.11). Then the isotropy of a,/?,7 on Uz 

follows from (1.14), the isotropy of the principal invariants and the moments, and the 
isotropy of 3?. 



The definitions and results above place no restrictions on U other than invariance. 
However, since we are interested in the relationship between the smoothness2 of <& and 
the smoothness of the coefficients in its representations, for the remainder of the paper 
we assume that the domain U of the tensor-valued isotropic function $ is also an open 
subset of Sym. Then U3 and U—Ux = U2\JU3 are open since Sym3 and Sym — Sym1 = 
Sym2 U Sym3 are open. And since Sym3 is dense in Sym, U3 and U2 U M3 axe dense in 
U. Now from (1.3) it follows that any smoothness properties shared by a, ß, 7 on an 
open subset liofU are also shared by $. Conversely, since the principal invariants 
and the moments of A are smooth functions of A, the formulas (1.14) imply that on 
the open subset U3 the coefficient functions a, ß, 7 inherit any smoothness properties 
of $. Thus the problem of determining the relationship between the smoothness 
of 3> and the smoothness of the coefficients in its representation (1.3) reduces to 
determining the smoothness properties that a,ß,j inherit from 3? at points in the 
set U — U3 = U-i U U2, which is closed and nowhere dense relative to U.z Rivlin 
and Ericksen [1, §29] obtained explicit formulas for a(A) and ß(A) when #A = 2 
and 7 satisfies (1.4); and on Ux we simply have a = ftr<& when ß and 7 satisfy 
(1.5). But these formulas are of no use for the problem at hand. There are infinitely 
many other sets of isotropic functions a, ß, 7 for which the representation (1.3) holds 
(though all such sets necessarily coincide on U3). The particular set of coefficient 
functions satisfying (1.4) and (1.5), while convenient for the proof of (1.3), may fail 
to be continuous on U even for polynomial <&.4 

Now suppose $ is continuous, so that a, ß, 7 are necessarily continuous on U3. 
Since U3 is dense in U, by a well-known theorem5 of analysis, a, ß, 7 have unique 
continuous extensions to all of U iff their limits from within U3 exist at each point 
of Ux U IA2\ and it is not hard to show that when these continuous extensions exist 
they are isotropic on U (cf. Proposition 2.1). However, in the explicit formulas (1.14) 
for a, ß, 7 on ZY3, the denominator AA -* 0 as A —> Hi U U2, so sufficient conditions 
for the existence of these limits are by no means obvious.6  This problem was first 

2For the present discussion we do not attach any precise meaning to the term "smooth"; e.g., it 
could mean continuous, differentiable, or fc-times continuously differentiable (denoted by Ck). 

3\iU lies in the set of nonsingular symmetric tensors, then on multiplying (1.12) by A-1 and 
using the representation (1.3), we obtain an alternate representation which is widely used in studies 
of nonlinear isotropic elastic solids (cf. [4]-[6]): *(A) = ä(A)I + /?(A)A + 7(A)A-1, where 
5(A) = o(A) - ÜAT(A), /?(A) = ß(A) + JAT(A), and 7(A) = mAy(A). It follows that a, ß, 7 are 
smooth at a point A iff ä, ß, 7 are smooth at A. 

4For example, by (1.12) we see that the isotropic function $(A) = A3 on U = Sym has the 
representation (1.3) with smooth coefficient functions a(A) = El A, /?(A) = — IIA, T(A) = I A, 

whereas the a,ß,j satisfying (1.4) and (1.5) are discontinuous since they must agree with the 
preceding solution on Sym3. 

5Cf. (3.15.5) in Dieudonne [9]. 
6It is easily seen that continuity of $ is not sufficient. Consider the continuous isotropic function 

* on Sym defined by $(0) = 0 and *(A) = HAy-^^A + A2) for A # 0. Then ß(A) = 7(A) = 
||A||-1/2 on Sym3, and since these functions are unbounded on every neighborhood of 0, they cannot 
be extended continuously to Sym. 



addressed by Serrin [2], who showed that the coefficients a,ß,j in the representaion 
(1.3) can be extended continuously from U3 to li if $ is C3. In proving the existence 
of the limits of a(A), /?(A), 7(A) asA^Be^U^ from within U3, he treated the 
cases B G U2 and B G Ux separately. These cases are referred to as double and triple 
coalescence, respectively. For double coalescence, his proof requires only that $ be 
C1. Serrin [2] also gave an example of a C1 isotropic function 3> on Sym for which 
the coefficients cannot be extended continuously to Sym; his example is discussed in 
Section 2. There appears to have been no additional contributions to this problem 
until the paper by Man [10] thirty-five years later. Man remarks that Serrin's proof, 
particularly for the case of triple coalescence, was given only in outline. Man gives a 
different proof (with full details) of the continuity of a, ß, 7 for this case. His proof 
has the advantage that $ is only required to be C2. On combining these results, we 
have 

Theorem 1.1 (Serrin [2] and Man [10]) If <& is C2 onU (respectively, C1 on 
U2 U U3), then there are unique continuous scalar-valued isotropic functions a, ß, 7 on 
U (resp. U2 U U3) for which the representation (1.3) holds. 

I am not aware of analogous results for the differentiability of the coefficients.7 One 
of the goals of this paper is to fill this gap in the literature. 

In the next section I confirm Theorem 1.1 using a method which is substantially 
different from that of Serrin and Man. Their proofs of the existence of limits of the 
coefficients at points in Ux U U2 are complicated by the fact that the denominator 
in the formulas for these coefficients goes to zero.8 Instead, in Section 2 I show that 
on U3 there are simple formulas for the coefficients in terms of the first or second 
derivatives of <&.   From these formulas it follows trivially that the coefficients have 

7Of course, it is well-known (cf. [l]-[4]) that if $ is polynomial in the sense that the components 
of *(A) are polynomials in the components of A, then the coefficients in (1.3) may be expressed as 
polynomials in the principal invariants of A; cf. Serrin [2], [3, §60], for a simple proof. Regarding 
polynomial dependence of response functions, Truesdell k Noll [4, p. 61, footnote] remark "To us, 
assuming polynomial dependence seems not only unnecessary ...but unphysical. We see no sign 
that nature loves a polynomial, and polynomial dependence is not even invariant under change of 
strain measure." The primary application of the above result on polynomial dependence would seem 
to be to the approximation of tensor-valued isotropic functions. If $ is C then its rth-order Taylor 
approximation $(r) at a spherical tensor cl is an isotropic polynomial of degree r and hence has a 
representation of the form $(r)(A) = ar(A)I + /?r(A)A + Tr(A)A2, where ar(A), A-(A), 7,(A) 
are polynomials in the principal invariants of A. However, this does not imply that aT, ßr, jr are 
rth-order approximations of a, /?, 7 at cl. Indeed, example (2.2) in the next section shows that for 
the case r = 1, the polynomial functions «i, ß\, 71 may be identically zero even if a, ß, 7 take on 
all real values in every neighborhood of every spherical tensor. 

Serrin [3, p. 235, footnote 2] states that the theorem on polynomial dependence may be generalized 
to analytic $, the coefficients in this case being analytic functions of the principal invariants. 

8They worked with explicit formulas for a,ß, 7 on U3 similar to (1.14) but expressed in terms of 
the eigenvalues of A and *(A). These formulas were noted by Rivlin and Ericksen [1, §29]; cf. also 
Truesdell k Noll [4, §48]. 



limits at points in Ux U U2 from within certain subsets of £/3, and then existence of the 
limits along arbitarary paths in U3 can be inferred from the isotropy of the coefficients 
(cf. Proposition 2.1). The proof does not require a separate treatment of double and 
triple coalescence. A similar procedure is used in Section 4, where I establish 

Theorem 1.2 If $ is C3 on U, then the continuous isotropic coefficients a,/?, 7 
in the representation (1.3) are C1 on U. If <fr is C2 (resp. C3) on U2 U U3, then 
a,ß,7 are C1 (resp. C2) on U2 U U3. 

My approach also differs from Serrin's and Man's in that I utilize the decomposi- 
tion of $ into its spherical and deviatoric parts. For any symmetric tensor A, let A* 
denote the deviatoric part of A: 

A*:=A-§JAA. (1.15) 

Then A is deviatoric if A = A* (equivalently, J^ = 0); A is spherical iff A* = 0. 
Let Sym* denote the subspace of Sym consisiting of all deviatoric symmetric tensors. 
The deviatoric part of $ is the function 3>* : U —► Sym* defined by 3?*(A) := <&(A)*. 
Then 

*(A) = |(tr*(A))I + **(A); (1.16) 

and since tr : Sym —> R and ( )* : Sym —> Sym* are linear, the isotropic functions tr $ 
and 3?* are both smooth iff $ is smooth. There are several advantages to using the 
decomposition (1.16): it simplifies some of the computations; it allows us to obtain 
the conclusions in the smoothness theorems under slightly weaker conditions on $, 
e.g., the conditions on $ in Theorem 1.1 can be replaced by the same conditions on 
$* together with the continuity of tr 4>; it reveals that relatively stronger smoothness 
properties hold for some of the coefficients in other useful representations for $ and $* 
(see below); and it more clearly reveals the nature of the possible loss in smoothness 
of the coefficients. 

By taking the deviatoric part and the trace of the representation (1.3), we obtain 

**(A) = /?(A)A* + 7(A)(A2)* (1.17) 

and 
tr *(A) = 3a(A) + IAß(A) + 77A7(A) . (1.18) 

On substituting (1.17) (or (1.20) below) into (1.16) we obtain a representation for $ 
which is similar to (1.3) but has the property that the coefficient of I is as smooth 
as <&. Although a,ß,j are not uniquely determined by <I>, from (1.18) we see that a 
is uniquely determined by tr<&, ß, and 7 and that a has any smoothness properties 
shared by tr 3>, ß, and 7. Therefore, it remains to establish the smoothness of ß and 
7 at points in Ux U ZY2, and for this it suffices to consider the representation (1.17) 
for $*. Actually, it is more advantageous to work with another representation which 



follows from (1.17). For any symmetric tensor A, let A** denote the deviatoric part 
of the square of the deviatoric part of A: 

A** := ((A')')* = (A*)2 - !^A.I = (A2)* - |IAA*, (1.19) 

where the expression on the right follows by squaring (1.15) and taking the deviatoric 
part. Then 

$*(A)   =   0(A)A*+7(A)A** 

=   -!JTA*7(A)I + 0(A)A*+7(A)(A*)2, (1.20) 

where 
8(A) = /3(A) + |/A7(A). (1.21) 

The representation (1.20)x is particularly useful in the study of deviatoric stress in 
isotropic elastic solids.9 From (1.21) it follows that if ß and 7 are smooth on an open 
subset Ü of U then so is 0; in particular, on Uz the isotropic function 8 is uniquely 
determined by <& and inherits any smoothness properties of $. However, it turns out 
that 8 is generally smoother than either ß or 7 at points in UX\MA2. Indeed, the other 
main result of this paper is 

Theorem 1.3 If $ is C1 on U, then there is a unique continuous scalar-valued 
isotropic function 8 onU for which the representations (1.20) hold. If <& is C2 (resp. 
C3) then 8 is C1 (resp. C2). 

The continuity part of this theorem is proved in Section 2; the differentiability part 
is proved in Section 4. From (1.21) it follows that ß is smooth if 8 and 7 are smooth; 
we use this fact and Theorem 1.3 to establish the smoothness of ß in Theorems 1.1 
and 1.2. 

The proofs of Theorem 1.2 and the second part of Theorem 1.3 use Proposition 4.1, 
which gives conditions under which a Cr scalar-valued isotropic function on Uz can 
be extended to a Cr function on U. The proof of this proposition is given in the 
Section 6; part of the proof uses some results due to Ball [13]. Section 3 contains 
additional formulas relating 8, 7, and ß to the first and second derivatives of $* or 
$. Some of these results are used in Section 4. In the statements and proofs of 
our theorems on the smoothness of the coefficients a, ß, 7, and 8, we regard these 

9For example, ifV is the left stretch tensor and A = In V is the logarithmic strain tensor, then A* 
and A** are independent of the dilatational part J = det V of the deformation. If T = $(A) is the 
Cauchy stress tensor, then (1.20)i expresses the deviatoric stress tensor as a linear combination of the 
volume-independent deviatoric strain tensors A* and A**. The coefficients 6 and 7 maybe expressed 
as functions of J (or IA = In J) and the volume-independent, invariant strain measures HA* and IU^*. 
For a hyperelastic material with strain energy e per unit reference volume, /7(A) = 3 de/dM^* 
and J9(A) = 2 de/dSA*, with 9(0) equal to twice the shear modulus of the infinitesimal theory; cf. 
Scheidler [11]. An equivalent result in terms of the representation (1.20)2 was obtained by Richter 
[12, (4.6)2]. 



coefficients as (isotropic) functions from U into R. They may also be regarded as 
functions of the principal invariants, the moments, or the eigenvalues. In Section 5 
we address the question of whether the established smoothness of the coefficients, 
regarded as isotropic scalar-valued functions on ZY, is inherited by the corresponding 
functions in these representations. The answer depends on the type of smoothness 
considered and on which representation is used. Here we also use some results due to 
Ball [13]. 

2    Continuity of the Coefficients 

The main results of this section are Theorems 2.1-2.3, which give sufficient conditions 
for continuity of the coefficients a, ß, 7, and 9. However, we begin with a discussion 
of Serrin's example mentioned in the Introduction. Define a scalar-valued isotropic 
function 7 on Sym by 

7(A) = 0 if A*=0,    7(A) = sin(||A*||-1/2) = sin(I^1/4)if A'^0. (2.1) 

Then 7 is discontinuous on the set Sym^ of all spherical tensors, and this discontinuity 
is nonremovable since 7 takes on all values between —1 and 1 in every neighborhood 
of Sym1. Define a tensor-valued isotropic function $ on Sym by <£(A) = 7(A)(A*)2. 
Then <& is C°° on Sym2U Sym3, $ is differentiate with derivative 0 at each spherical 
tensor, and £><&(A) —>■ 0 as A* —> 0; thus $ is C1 on Sym. From (1.19)—(1.21) we 
see that 9 = 0 and ß(A) = -§/A7(A). Then from (1.18) and the identity 

UA - HA* = |/A
2, (2.2) 

we have a(A) = |i^7(A). From the uniqueness of a,ß,"f on Sym3 it follows that 
these coefficients cannot be extended continuously to Sym even though $ is C1. To 
within some inessential constants, this is the example given by Serrin [2]. An even 
more pathological example is obtained by modifying his example as follows: 

7(A) = II~*Xl5 sin(JZ^1/5) if A* ^ 0. (2.3) 

Then <£ is still C1 on Sym, but the coefficients a, ß, 7 take on all real values in every 
neighborhood of Sym^. 

In the Introduction we observed that on the open subset U3 of U, the coefficients 
a, ß, 7, and ß are uniquely determined by $ and inherit any smoothness properties 
of $. But from the representations (1.17) and (1.20) it is reasonable to expect that 
on Uz the coefficients ß, 7, and 9 are uniquely determined by $* and inherit any 
smoothness properties o/$*; regardless of whether or not tr $ is smooth. To see that 
this is indeed the case, we can proceed as in the derivation of (1.14) and either solve 



(1.17) for ß and 7, or solve (1.20) for 0 and 7, and then use the relation (1.21). The 
latter approach, together with the identities 

yields 
tr(A*A~) = IZ7A.,    tr(A**)2 = |/7^, (2.4) 

0(A)   =   [|irAUr(r(A)A*)-3mA*tr(r(A)A")]/AA*, (2.5) 

7(A)   =   3[iTA*tr(r(A)A**)-IffA.tr(r(A)A*)]/AA., (2.6) 

for A € Uz. Here AA* is the cubic discriminant of the characteristic polynomial of 
A* or, equivalently, of A: 

AA.   =   \Uf - 3lill* = -4//A* - 272Z7J, 

=   (al-a;y(a;-a;y(a;-a*iy = AA, (2.7) 

where a* are the eigenvalues of A*.10 

If ** is differentiate, then 0 and 7 are differentiate on U3, so by differentiating 
the representation (1.20)i we obtain the following formula for the derivative of $* at 
any A € Uz: 

£>$*(A)[E]   =   (V0(A).E)A* + (V7(A)-E)A** 

+ 0(A) E* + 7(A)(A*E* + E*A*)*. (2.8) 

Here the symmetric tensors V0(A) and V7(A) are the gradients of 0 and 7 at A 
(e.g., V0(A) • E = Z?0(A)[E]), and we have used the relations 

DAA*[E] = E*,    DAA**[E] = (A*E* + E*A*)*. (2.9) 

Here and below, E and F denote arbitrary symmetric tensors. If $* is twice differ- 
entiate, then 0 and 7 are twice differentiate on U3, so by differentiating (2.8) and 
using (2.9), we obtain the following formula for the second derivative of <&* on Uz: 

£>2$*(A)[E,F]   =   Z>20(A)[E,F]A* + D2
7(A)[E,F]A** 

+ (V0(A) • E) F* + (V7(A) • E)(A*F* + F*A*)* 

+ (V0(A) • F) E* + (V7(A) • F)(A*E* + E* A*)* 

+ 7(A)(F*E*+E*F*)\ (2.10) 

We wish to solve (2.8) for 0(A) and (2.10) for 7(A). The next paragraph contains 
some algebraic results which will be used in these solutions. 

"Equivalent formulas for 0 and 7 were derived by Blinowski [14] using a slightly different proce- 
dure; he also discusses several representations which follow from (1.20)i. We could conceivably use 
(2.5) and (2.6) to determine sufficient conditions for the existence of the limits of 0(A) and 7(A) as 
A -*• U\ U Z/2; however, as indicated in the Introduction, we will follow a different procedure here. 
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For any symmetric tensor A, let V(A) denote the subspace of Sym consisting of 
all polynomials in A, that is, all tensors of the form CQI + cxA + c2A

2 -\ \- cMAM 

for some scalars CQ, ..., cM. Then by the Cayley-Hamilton theorem, 

V(A) = span{I,A,A2} = span {I, A*, A**} , (2.11) 

where the right equality follows from (1.15) and (1.19). Let V{A)L denote the or- 
thogonal complement of ^(A): 

V{A)L   =   {H G Sym :I-H = A.H = A2-H = 0} 

=   {H G Sym :I-H = A*-H = A**.H = 0}. (2.12) 

In particular, since I-H = trH, every H G /P(A)± is deviatoric, i.e., H* = H. The 
dimension of V{A) is #A, so V{A)L has dimension 6 — #A. In particular, 

V(A) = Sym1   iff   V(A)± = Sym*   iff   #A = 1. (2.13) 

For any orthonormal basis {e,} = {e1,e2,e3} for V, let S{e,} denote the three- 
dimensional subspace of Sym consisiting of all symmetric tensors with principal ba- 
sis {e,}: 3 

A G S{e,} iff A = J2 «,-e,- ® e,. (2.14) 
«=i 

For any symmetric tensor E let £,_,• = e,- • Ee^- = Eji denote the components of E 
relative to {e^}, where " • " also denotes the inner product on V. Since a tensor H is 
orthogonal to every A € S{e,} iff 0 = H • (e^ ® e,) = Hü for each i, the orthogonal 
complement of S{e,} is the three-dimensional subspace of symmetric tensors whose 
diagonal components relative to {e,} are zero: 

S{e,}x = {H G Sym : et • He; = Hu = 0, i = 1,2,3} . (2.15) 

In particular, each HeS{eJx is deviatoric. If A G S{e,} then 

V(A) C S{e,}    and   5{eJx C V{A)L C Sym*, (2.16) 
with 

V(A) = S{ei}   iff   S{ei}
s- = V(A)±   iff   #A = 3. (2.17) 

Also, for any symmetric tensor A we have 

V(A)L   =   span{S{et}
x : {e,} is a principal basis for A} 

=   span{H : e, • He, = 0 for some principal basis {e,} of A}.  (2.18) 

The following identities will be particularly useful: 

E*H = EH  =  tr(EH), VH G Sym* 

=  2j^EijHij,    VHe5{e,-}S (2.19) 
i<3 



and 

(A*E*+E*A*)*.H = (A*E + EA*)-H = 2tr(A*EH),       VH e V(A)± 

= -{a\E23H23 + a*2E31H31 + a$E12Hl2),     VA € 5{eJ, VH € S{e^. 

(2.20) 

In deriving (2.20)3 we have used the fact that the eigenvalues a*, of A* satisfy 

trA* = a* + a* + a*3 = 0. (2.21) 

If $* is differentiable, then from (2.8), (2.12), (2.19), and (2.20), we see that for 
any A G U3, 

D**{A)\E] H = tr(EH)0(A) + 2tr(A*EH)7(A),    VH G P(A)1. (2.22) 

If V> is an isotropic scalar-valued function on U and if U denotes the set of all points in 
U at which $ is differentiable, then Ü is invariant and Vtp is an isotropic tensor-valued 
function on li. Now from the representation (1.3) we know that *(A) G V(A) for 
any isotropic tensor-valued function ^, so by taking ^ = V^ we obtain 

VV>(A)-K = 0,  VKeP(A)1. (2.23) 

If $* is twice differentiable, then from (2.10) with F = K, (2.12), (2.19), (2.20), and 
(2.23), we see that for any A G U3, 

I>2**(A)[E,K].H   =   tr(KH)(V0(A).E)+2tr(A*KH)(V7(A).E) 

+ 2tr(E*KH)7(A),     VH,KG7>(A)
X
. (2.24) 

And from (2.24) and (2.23), for any A G U3 we have 

£2$*(A)[L,K]-H = 2tr(LKH)7(A),    VH,K,L G V(A)^ . (2.25) 

Let W{e,} denote the subset of SfeJ-1- consisting of those tensors whose off-diagonal 
components relative to {e,} have absolute value 1: 

W{e,-} := {H G Sym : Hü = 0 and H{j = ±1 if i # j} C 5{e,}x . (2.26) 

Then from (2.19)-(2.21) with E = H G W{e,-}, we have 

trH2 = 6,    tr(A*H2) = 0,    VA G 5{eJ , VH G W{e,-} . (2.27) 

On setting E = H G W{e,} in (2.22) and using (2.27), we obtain the following simple 
formula for 6 onW3: 

0(A) = §£>r(A)[H]-H,    VH€W{e,-}, (2.28) 
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where {e,} is any principal basis for A. Similarly, 

trH3 = 6eH,    eH:=H12H23H31, VHe^e,-}1, (2.29) 

so on setting L = K = H G W{e,-} in (2.25) and using (2.29) and (2.26), we obtain 
the following simple formula for 7 on U3: 

7(A) = ^|Z)2r(A)[H,H].H,    eH = ±l,  VHeW{e,-}, (2.30) 

where {et} is any principal basis for A. 
If $* is C1 then Z?$* is continuous, and we can use (2.28) to show that 6(A) has 

a limit as A —► B e Hi U U2 from within U3. The only difficulty is that as A —> B 
along some arbitrary path in U3, the principal axes of A will generally change; in 
particular, they might not have limits at B.11 Since H in the formula (2.28) belongs 
to the set 7i{eJ, which changes with the principal basis {e,} of A, it is not obvious 
that (2.28) has a limit at each point Be^U U2. Similar comments apply to the 
formula (2.30) for 7 when <l>* is C2. Fortunately, this difficulty is easily overcome by 
utilizing the isotropy of 9 and 7, as we now show. 

For any orthonormal basis {e,} for V, the set U3 D 5{e,-} consists of all tensors 
in U with three distinct eigenvalues and principal basis {e^}. Included in this set is 
the set £/<{e,} consisting of all A = X)f=1 

aiei <S> e,- G ZY for which Oj < a2 < a3. The 
invariance of U3 guarantees that U3 fl 5{e,-} and U<{e:i} are nonempty. And since U3 

is an open subset of the six-dimensional space Sym, U3 D 5{et} and £/<{e,-} are open 
subsets of the three-dimensional subspace 5{e,}. 

Proposition 2.1 For a continuous scalar-valued Isotropie function %j> onU3, the 
following conditions are equivalent: 

(1) ip has a continuous extension r/> to U; 

(2) VB € Ux U U2, the lim V>(A) exists; 
A-+B 
A€U3 

(3) VB € Ux U U2 and each principal basis {e,} for B, the      lim    ip(A) exists; 
A.—>D 

A€W3nS{e,} 

(4) VB G Ux U U2 and some principal basis {e1,e2,e3} for B corresponding to the 
ordered eigenvalues 5a < b2 < b3 of B, the     lim   ^(A) exists. 

A-^B 
AGW<{e,} 

When these conditions hold, $ is unique and isotropic on U. 

nCf. the example in Kato [15, p. 128] or the two examples in Scheidler [16]. 
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As discussed in the Introduction, the equivalence of (1) and (2) follows from the 
fact that U3 is dense in li, and when these conditions hold ^ is unique: $(B) = 
limA_B ^(A), A G U3, for each B G Ux U U2. Clearly, (2) =£> (3) => (4), so it remains 
to show that (4) implies (2) and that the continuous extension if; is isotropic. The 
proof will be completed below,12 but first we apply Proposition 2.1 to the continuity 
of 9 and 7. Condition (3) will suffice for all the applications in this paper. However, 
the weaker condition (4) arises naturally in the proof below and has other applications 
that are not discussed here. 

Let B G Ux U K2 and let {e,} be any principal basis for B. Choose any H G 
n{ef}] then the formula for 0(A) in (2.28) holds for each A G U3 D S{e{}. If $* 
is C1, then Z)$* is continuous, so the right-hand side of (2.28) has a limit, namely 
|D$*(B)[H] • H, as A -> B from within U3 n 5{e,}, since H is fixed. Thus condition 
(3) of Proposition 2.1 holds for t£> = 9, and we know that 9 is continuous and isotropic 
on U3, so by Proposition 2.1 we conclude that 9 has a unique continuous extension to 
U. Summarizing (and replacing B by A in the above limit), we have 

Theorem 2.1 If $* is Cl on U, then there is a unique continuous scalar-valued 
isotropic function 9 on U for which the representations (1.20) hold. This coefficient 
9 is given by (2.28) for any A € U and any principal basis {e,} for A. 

By a similar argument applied to (2.30), we conclude that 7 has a continuous exten- 
sion to U when $* is C2. On combining this result with Theorem 2.1 and using the 
relations (1.18) and (1.21), we obtain 

Theorem 2.2 If <I>* is C2 on U, then there are unique continuous scalar-valued 
isotropic functions ß,"i,9 onU for which the representations (1.3), (1-17), and (1.20) 
hold. The coefficients 7 and 9 are given by (2.30) and (2.28), respectively, for any 
A G U and any principal basis {e,} for A; then ß can be expressed in terms of 9 and 
7 by (1.21). If, in addition, tr<& is continuous, then there is a unique continuous 
scalar-valued isotropic function a on U for which the representation (1.3) holds, and 
a is given in terms of tr$; ß, and 7 by (1.18). 

Proof of Proposition 2.1: Assume (4) holds, so that B = £f=1 k
ei ® ei Wlt^ 

bi <b2< 63. Let ZB denote the limit in (4). Let {An} (n = 1,2,...) be any sequence 
in Uz converging to B, and let £?=1 «^„e.^^e,^, with aln < a2n < a3>„, be a spectral 
decomposition of A„; then ain —» ft;.13 Let Qn be the orthogonal tensor which maps 
et> to e,- (t = 1,2,3). Then QnA„C£ = £?=1 a,-,„e,-® e,- G W<{e,-}, and since o,-iB -> &,- 
it follows that Q„A„C£ -> B. Thus (4) implies that V'(Q„A„Q^) -> /B- But then 

12Proposition 2.1 also follows from Proposition 6.1. We have given a separate proof of Proposi- 
tion 2.1 in this section to avoid the discussion of certain preliminary results which are only needed 
for the more general Proposition 6.1. 

13Here we have used the well-known fact that the ordered eigenvalues of a symmetric tensor are 
continuous functions on Sym. In fact, they are Lipschitz continuous; a proof can be found in Ball 
[13, Lemma 5.8]. 
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iß(An) —> /B since iß(An) = iß(QnAnQT
n) by the isotropy of iß. Since {An} was an 

arbitrary sequence in U3 converging to B, the limA_,B iß (A), A € U3, exists and equals 
/B. In particular, (2) holds. 

Since the continuous extension -iß coincides with the isotropic function iß on U3, 
to prove the isotropy of iß on U it suffices to show that iß is isotropic on UX\JU2. Let 
B € Ux U U2, let Q be any orthogonal tensor, and let {Bn} be any sequence in U3 

converging to QBQT. Then $(B„) -► ^(QBQT), but also iß(Bn) = 0(QTBnQ) -> 
V>(B), since QTBnQ -» B. Thus 0(QBQT) = ^(B).    □ 

If 3? is Ck then so are 3>* and tr$. Therefore, from Theorem 2.1 we recover the 
first statement in Theorem 1.3, and from Theorem 2.2 we recover the case where $ 
is C2 on U in Theorem l.l.14 The next theorem implies the case where 3? is C1 on 
U2 U U3 in Theorem 1.1. Note that we cannot use the formula (2.30) for 7 in this 
case since we are not assuming that $* is twice differentiate. Let B = £f=1 &,e,- (g> e, 
be any spectral decomposition of B € U2. Then bt ^ bm = bn for some permutation 
l,m,n of 1,2,3. Let H,K € 5{e,}J- satisfy 

Klm = 0,    Kln = Hln = ±\,    -Kmn = Hmn = ±l, (2.31) 

with Hlm arbitrary. Then from (2.19) and (2.20), we have 

tr(KH) = 0   and   tr(A*KH) = a* - a*m = at - am , VA € 5{e,-} . (2.32) 

On setting E = K in (2.22), we find that for any A e Uz n 5{e,}, 

7(A)=     0/   ,[   \     ,    VH,Ke5{e,-}-L satisfying (2.31). (2.33) 
2(a/ - am) 

Now as A —» B from within li3 f\ 5{e,}, a; = e/-Aej —» e; • Be( = bt; similarly, 
am ~~* ^m- Since b{ — bm ^ 0, and since H and K may be held fixed during this 
limiting process, we see that limA_+B7(A), A € Uz C\ 5{e,}, exists when Z>$* is 
continuous. And we know that 7 is continuous and isotropic on U3. By applying 
Proposition 2.1 with iß — 7 and U replaced with U := U — Ux = U2 U Uz (so that 
Ux = 0, W2 = ^25 ^3 = ^3)5 we see that 7 has a continuous extension to U2 U K3. On 
combining this result with Theorem 2.1 and replacing B by A in the above limit, we 
obtain 

14The weaker conditions on $ in Theorems 2.1 and 2.2 (i.e., the requirement that $* is Ck 

while tr * need only be continuous) may have applications to isotropic elastic solids. Suppose, for 
example, that the material has suffered damage in the form of a random distribution of microcracks. 
Assuming that the damaged material can also be modeled as an isotropic elastic solid, one expects 
a lower bulk modulus in tension (where cracks are opening), while in compression (where all cracks 
are closed) the bulk modulus should ideally be the same as in the undamaged material; cf. Horii and 
Nemat-Nasser [17], where an analysis based on the linear theory also predicts that the shear modulus 
in the damaged material increases smoothly in going from tension to compression. Thus if $ is the 
response function for the Cauchy stress tensor in the damaged material, and hence — |tr$ and $* 
the response functions for the pressure and deviatoric stress, respectively, it might be reasonable to 
regard tr $ as continuous but with a discontinuous derivative, and $* as Ck (k > 1). 

13 



Theorem 2.3 // <&* is Cl on the open set U — Ux = U2 U Uz, then there are 
unique continuous scalar-valued isotropic functions ß,j,8 on U2 U Z/j for which the 
representations (1.3), (1.17), and (1.20) hold. The coefficients 7 and 8 are given by 
(2.33) and (2.28), respectively, for any A € U2 U U3 and any principal basis {e,} for 
A; in particular, the at and am in (2.33) are the distinct eigenvalues of A. Then ß 
can be expressed in terms of 8 and 7 by (1.21). If, in addition, tri> is continuous 
on U2 U U$, then there is a unique continuous scalar-valued isotropic function a on 
U2 U U3 for which the representation (1.3) holds, and a is given in terms of tr<&, ß, 
and 7 by (1.18). 

3    Alternate Formulas 

Here we consider alternate formulas for 8 and 7 and for the derivatives of $ and $*. 
Some of these results are used in the next section. Throughout this section, E, F, G 
denote arbitrary symmetric tensors, and Z, m, n denotes an arbitrary permutation of 
1,2,3. For any orthonormal basis {e,} = {e^e^eg} for V, let 

H, := em <g> e„ + en <g> em G Sfe,-}-1-. (3.1) 

Then 
HrH, = 2,    HrHm = 0; (3.2) 

hence {H1,H2,H3} is an orthogonal basis for 5{e,-}-L. Also, 

H,Hm + I^H, = H„ ,    trtH^Hj = 1,    tr(H,H2) = 0. (3.3) 

Since the eigenvalues a? of A* satisfy (2.21), for any A G Sfe,} we have 

A*H/ + H,A* = -a,*H/, (3.4) 

(A*HZ + H,A*) • H, = 2 tr(A*H,2) = -2a; , (3.5) 
and 

(A*H, + H,A*) • Hm = 2 tr(A*H,Hm) = 0. (3.6) 

Referring to the definition (2.26) of W{e,}, we see that 

H1 + H2 + H3eW{e,-}. (3.7) 

Assume $* is differentiable, and let A G Uz. From (2.8) and (2.23) we obtain 

£>r(A)[H] = 0(A)H + 7(A)(A*H + HA*),    VHeW, (3.8) 

where we have used the fact that H and A*H + HA* are deviatoric. We can use 
(1.15) and (1.21) to express £>$*(A)[H] in terms of ß instead of 9: 

0**(A)[H] = 0(A)H + 7(A)(AH + HA),    VH € V(A)±. (3.9) 
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Similarly, from (2.22), (1.15), and (1.21), we have 

Z?**(A)[E]-H = tr(EH)/9(A) + 2tr(AEH)7(A),    VHeP(A)1. (3.10) 

On taking the inner product of (3.8) or (3.9) with E, we obtain the same expression 
as on the right-hand side of (2.22) or (3.10), respectively. Therefore 

Z?**(A)[H].E = D&( A) [E]-H,    VHeP(A)1. (3.11) 

Since A*C and AC € V{A) for any C e 7>(A), by setting E = C in (2.22) or (3.10) 
and using (3.11), we obtain 

D$*(A)[H].C = £>$*(A)[C]-H = 0,    VC e V(A), VH e V(A)\        (3.12) 

By setting E = H, and H = Hm in (2.22) and using (3.2) and (3.6), we obtain 

D**(A)[H,].Hm = 0. (3.13) 

By (3.7) we may set H = T,3k=1 H& in (2.28), and when (3.13) is applied to this result, 
we obtain 

0(A) = lJ2D$*(A)[Hk}.Hk. (3.14) 
0 k=i 

In (3.14) and (3.12), and in similar results below, the orthonormal basis {e,} relative 
to which H1?H2, H3 are defined is assumed to be a principal basis for A. Also, since 
only differentiablity of $* was assumed above, the relations (3.8)-(3.14) are generally 
valid only for A G Uz. 

Now assume that 3> is differentiate. From (1.16) we have 

D$(A)[E] = £>$*(A)[E] + l[V(tr*)(A)-E]I. (3.15) 

Since I • G* = 0 for any tensor G, it follows that 

£$(A)[E] • G* = D**(A)[E] • G* . (3.16) 

From (3.15) and (2.23) with V> = tr$, it follows that 

£>$(A)[H] = D$*(A)[H],    VHeP(A)1. (3.17) 

These results hold for each A € U. Now assume that A € Uz. Then by (3.17) we may 
replace <&* by $ in (3.8) and (3.9). Similarly, since H* = H for each H e V(A)J-, 
by (3.16) and (3.17) we may replace $* by * in (2.22), (2.28), (2.33), and (3.10)- 
(3.14). If a scalar-valued isotropic function if; on U is twice-differentiable on U3, then 
by applying (3.12) and (3.13) with 3>* —> $ = Vrp, we see that for any A € U3, 

I>V(A)[C,H] = 0,    VCGP(A), VHGP(A)
1

, (3.18) 
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and 
£V(A)[H„ Hm] = 0,    Vtf(A) • H, = 0, (3.19) 

where the relation on the right is just a special case of (2.23). 
Now assume that $* is C1. Then D3>* is continuous, and without loss of generality 

we may assume that 6 is also continuous on U (cf. Theorem 2.1). On taking the limit 
of (3.13) or (3.14) as A -► B = £-=1 6,-e,- <g> e, eU^U2 from within Uz H 5{eJ while 
holding the Hk fixed, and then writing A in place of B, we see that (3.13) and (3.14) 
hold for every A G U. By applying the same limiting process to (3.11) and (3.12) 
and using (2.17), we see that for every A elf with principal basis {e,}, 

Z>**(A)[H].C = I>**(A)[C].H = 0,    VC€5{e,-}, VH € S{e<}\        (3.20) 

and Z)$*(A)[H]-E = D**(A)[E]-H for each H G Sfe}-1-. In the latter relation 
E is arbitrary, so from (2.18) we conclude that (3.11) holds for each A G U. From 
the previous paragraph it follows that these results also hold with $* replaced by $, 
provided that $ is C1, or more generally, that $* is C1 and tr$ is differentiate, 
since the latter conditions suffice for (3.16) and (3.17). 

Now assume that $* is twice differentiable, and let A G H3. By setting E = H/ 
and F = Hm in (2.10) and using (3.19) and (3.3)1; we obtain 

P2r(A)[H,,Hm]=7(A)Hn. (3.21) 

On taking the inner product of (3.21) with Hn or Hm and using (3.2), or from (2.25) 
and (3.3), we obtain 

7(A) = ±D>$*(A)[Hh HJ • Hn (3.22) 

and 
D2r(A)[H/,Hm].Hm=0. (3.23) 

Now assume that $ is twice differentiable. Then from (3.15) we have 

£>2$(A)[E,F] = £>2$*(A)[E,F] + |£>2(tr$)(A)[E,F])I, (3.24) 

which implies 
£>2$(A)[E, F] • G* = £>2$*(A)[E, F] • G*. (3.25) 

These results hold for any A G U. Now assume A G Uz. Then from (3.25) it follows 
that we may replace $* by $ in the formulas (2.24), (2.25), (2.30), (3.22), and (3.23). 
By setting E = H/ and F = Hm in (3.24) and using (3.19) with ip = tr<&, we obtain 

D**(A)[Hh Hm] = I>2r(A)[H„ Hm]. (3.26) 

Thus (3.21) holds with $* replaced by $. 
Now assume that $* is C2. Then D2$* is continuous, and without loss of gen- 

erality we may assume that 6, 7, and ß are also continuous on U (cf. Theorem 2.2). 
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Arguing as in the C1 case above, we conclude that (3.8)-(3.10) and (3.21)-(3.23) hold 
for every A. Eli. And from the previous paragraph it follows that these results hold 
with $* replaced by $ when $ is C2. Actually, (3.8)-(3.10) with 3>* -* $ hold for 
every A G U under the weaker condition that <&* is C2 and tr 3? is differentiable, since 
this condition suffices for (3.16) and (3.17). Similarly, (3.21)-(3.23) with $* -> $ 
hold for every A G U under the weaker condition that $* is C2 and tr<£ is twice 
differentiable. 

4    Differentiability of the Coefficients 

To establish sufficient conditions for the differentiablity of the coefficients we use the 
same approach as in the previous section, that is, for A G Uz we express V0(A) and 
V7(A) in terms of -D2$*(A) or D33>*(A) and show that these expressions have limits 
as A —► B G U-L U U2 from within K3 D Sfe,}, where {e,} is a principal basis for 
B. Then to conclude that 9 and 7 are C1 functions on U, we need an appropriate 
generalization of Proposition 2.1. Since we are also interested in analogous results 
for higher order derivatives of the coefficients, we generalize Proposition 2.1 to Cr 

isotropic functions, where r denotes some positive integer. 

Proposition 4.1 Let ip be a CT~l scalar-valued isotropic function on U which is 
Cr on U3. Then the following conditions are equivalent: 

(1) i) is Cr on U; 

(2) VB G Ux U U2, the  lim Driß(A) exists; 
A->B 
A€W3 

(3) VB G Ux U U2, each principal basis {e,} for B, and any El5..., Er G Sym, 
the       lim    DT^(A)[E1,..., Er] exists. 

A->B 

Here C° (i.e., Cr~l for r = 1) means continuous. The proof is given in Section 6.15 

Throughout this section we assume that <&* is at least C2 on U. Then without loss of 
generality we can assume that ß, 7, and 6 are continuous on U (cf. Theorem 2.2). As 
in the previous section, E, F, G denote arbitrary symmetric tensors. Unless stated 
otherwise, l,m,n denotes an arbitrary permutation of 1,2,3. 

By setting K = H G W{e,} in (2.24) and using (2.27), we obtain the following 
formula for V0 on Uz: 

V^(A).E = iJD
2$*(A)[E,H]-H-|tr(E*H2)7(A),    VH€ft{e,-},        (4.1) 

:5As shown in Section 6, condition (3) can be replaced by a much weaker condition. However, the 
version stated above suffices for the applications in this paper. 
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where {e,-} is any principal basis for A. Let B € Ux U U2 and let {e,} be any principal 
basis for B. Choose any H G ft{e,} and any symmetric E. Then the formula for 
V0(A) in (4.1) holds for every A G U3 D 5{e,}. Since J9$* and 7 are continuous on 
U, the right-hand side of (4.1) has a limit as A —> B from within Uz fl 5{e,}, and 
thus so does D9(A)[E] = W(A) «E. Since 9 is isotropic and continuous on U and 
C1 (in fact C2) on U3, Proposition 4.1 with i]> = 9 and r = 1 yields' 

Theorem 4.1 If <&* is C2 on ZY, i/ien 0 is C1 on U, and V0 is given by (4-1) for 
any AGW and any principal basis {e,} for A. 

Now assume that <&* is C3. By differentiating (2.10) and using (2.9), we obtain 
the following formula for £)3$*(A) at any A € Uz: 

£>3$*(A)[E,F,G]   =   £30(A)[E,F,G]A* + I>37(A)[E,F,G]A** 

+ £>20(A)[E, F] G* + D2
7(A)[E, F](A*G* + G* A*)* 

+ £>20(A)[E, G] F* + D2
7(A)[E, G](A*F* + F*A*)* 

+ £>20(A)[F, G] E* + £>2
7(A)[F, G](A*E* + E*A*)* 

+ (V7(A)-E)(G*F* + F*G*)* 

+ (V7(A)-F)(G*E* + E*G*)* 

+ (V7(A)-G)(E*F* + F*E*)*. (4.2) 

On taking the inner product of (4.2) with H e V{A)L and using (2.12), (2.19), and 
(2.20), we obtain 

£>3r(A)[E,F,G].H   =   D2ö(A)[E,F]tr(GH) + 2D2
7(A)[E,F]tr(A*GH) 

+ D29(A)[E, G] tr(FH) + 2D2
7(A)[E, G] tr(A*FH) 

+ D29{A)[F, G] tr(EH) + 2D27(A)[F, G] tr(A*EH) 

+ 2(V7(A) • G) tr(E*F*H) + 2(V7(A) • F) tr(G*E*H) 

+ 2(V7(A).E)tr(G*F*H), (4.3) 

for any A e Uz and any H € V{A)L. We wish to solve this for V7(A)-E. Set 
F = H,, G = Hm, and H = Hn. Then the first two lines in (4.3) drop out from (3.2) 
and (3.6); and the third and fourth lines drop out from (3.19). On using (3.3)2 in the 
last line, we obtain the following simple formula for V7 on Uz: 

V7(A) • E = f£>3r(A)[E, H„ Hm]. Hn, (4.4) 

where the orthonormal basis {e,} relative to which Hl5H2,H3 are defined (cf. (3.1)) 
is any principal basis for A. Arguing as in the proof of Theorem 4.1, we conclude 
that 7 is C1 on U when $* is C3, and that (4.4) holds for each A G U. 

Next we wish to show that 9 is C2 on U when <&* is C3.   Since 9 is C1 on U 
(cf. Theorem 4.1), by Proposition 4.1 we need only show that limA_B .D20(A)[E, F], 
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A G U3 D 5{e,-}, exists for each B G Ux U ZV2, each principal basis {e,} for B, and any 
symmetric tensors E,F. And since {HX,H2,H3} is a basis for S'fe,}-1-, it suffices to 
show that D20(A)[Hz,Hm], D*8{A)\HhH,], £>20(A)[C,D], and £>20(A)[C,Hz] have 
limits from within U3 D 5{e,}, for any C,D G ^{e,}. But the first and last of these 
expressions are zero by (3.19) and (3.18), respectively. Consider the third expression. 
Set E = C, F = D, and G = K in (4.3), where C, D G V(A) and K G P(A)1. Then 
A*C,A*D,C*D* G V(A), so the second and third lines and the first expression in 
the fourth line in (4.3) drop out since H G V{A)-L. Thus for any A G U3 we have 

Z?3$*(A)[C,D,K]-H   =   £»2^(A)[C,D]tr(KH) + 2D2
7(A)[C,D]tr(A*KH) 

+ 2(V7(A) • D) tr(C*KH) + 2(V7(A). C) tr(D*KH), 

VC,DGP(A),    VH,KGP(A)
X
. (4.5) 

Now let K = H G Ti{ei} in (4.5), where {e,} is any principal basis for A G Uz. Then 
■p(A) = 5{e,}, so from (2.27) we obtain 

£>20(A)[C,D] = |£3$*(A)[C,D,H].H,    VC,D G 5{e,}, VH G W{e,-}.    (4.6) 

Since ** is C3, it follows that £>20(A)[C,D] has a limit as A -* B G Ux U U2 

from within 1AZ O S{ei}, with C,D G -Sie,} fixed. Finally, consider the expression 
D20(A)[H/,Hz]. On settting E = F = Hz and G = H = Hz or Hm in (4.3), and 
using (3.2), (3.5), and (3.19), we obtain 

|£>3r(A)[H„ Hz, Hz] • Hz = £>20(A)[Hz, Hz] - a;£>2
7(A)[Hz, Hz]        (4.7) 

and 

I£»3$*(A)[H„ H„ Hm] • Hm = Z>20(A)[Hz, H,] - a;£>2
7(A)[Hz, H,]. (4.8) 

On adding (4.7) and (4.8) and using —a* — a*m = a*, we obtain 

2Z?2ö(A)[H/,H/] + <D2
7(A)[H/,H/]   =   l£3r(A)[Hz,Hz,Hz].Hz + 

|£3r(A)[Hz,Hz,Hm].Hm.   (4.9) 

Then by interchanging m and n in (4.9) and adding the result to (4.8), we obtain 

3D20(A)[HZ,HZ]   =   ll?3**(A)[H„Hl,Hf.].Hm + lI>3**(A)[Hl,Hl,Hfl].Hl, 

+ p3r(A)[H/,Hz,H/]-H/, (4.10) 

where the orthonormal basis {e,} relative to which H1,H2,H3 are defined is any 
principal basis for A. It follows that D20(A)[Hz, Hz] has a limit as A —> B G Ux U U2 

from within U3 C\ S'fe,} with Hz fixed. From the remarks at the beginning of the 
paragraph, we conclude that 9 is C2 on U when $* is Cz. On combining this with 
the result of the previous paragraph and using (1.21) and (1.18), we obtain 
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Theorem 4.2 // $* is C3 on U, then ß is C2 on U, and 7 and ß are C1 on U. 
For any A € U, W(A) and V7(A) are given by (4-1) and (44)> respectively, and 

V/?(A) • E = V0(A) • E - !(IB7(A) + /AV7(A) • E). (4.11) 

//, in addition, tr $ is Cl on U, then so is a, and Va can be expressed in terms of 
V(tr<£), Vß, and V7 by means of the relation 

V(tr*)(A)-E   =   (3Va(A)+/AV^(A) + J7AV7(A))-E 

+ /E/?(A) + 2(A.E)7(A). (4.12) 

Now we turn to the smoothness of 7 at points in U2. Let B = J23
=1 6,-e,- ® e,- be any- 

spectral decomposition of B € U2. Then bl^bm- bn for some permutation /, m, n of 
1,2,3. For H,K G 5{e,-}J- satisfying (2.31) we have, by (2.32) and (2.24), 

2(a, - am)V7(A) • E = £2$*(A)[E,K] -H - 2tr(E*KH)7(A) (4.13) 

for any A € U3 with principal basis {e,}. Then from (4.13), Proposition 4.1, and 
arguments similar to those preceding Theorem 2.3, we conclude that 7 is C1 on 
U2 U Uz if $* is C2 on U2 U U3. Now assume that $* is C3 on U2 U Uz. Then V7 is 
continuous on U2U U3, and for H and K as above, (4.5) yields 

£>3r(A)[C,D,K].H   =   2(a/-am)D27(A)[C,D] + 2(q-cm)(V7(A).D) 
+ 2(d,-«U(V7(A).C) (4.14) 

for any A eU3C\ 5{e,} and any C,D e 5{eJ. By subtracting (4.7) from (4.8), we 
obtain 

(a/-am)£>27(A)[H„H/]   =   ^^^[H^H^HJ  Hm 

-iD^^iH^H^H.j.H,. (4.15) 

Arguing as above (see also the comments preceding (4.5)), we conclude that 7 is C2 

on U2 U U3. On combining the results of this paragraph with Theorems 4.1 and 4.2 
and using (1.21) and (1.18), we obtain 

Theorem 4.3 // $* is C2 (resp. C3) on U2 U U3, then 0,7,/? are Cl (resp. C2) 
on M2U U3. If, in addition, tr3? is C1 (resp. C2) on U2 U li3, then so is a. 

Of course, if $ is Ck then $* and tr$ are Ck, so Theorems 4.1, 4.2, and 4.3 
yield Theorem 1.2 and the second part of Theorem 1.3. From (3.25) it follows that 
we may replace <£* with $ in (4.1) and (4.13) when * is C2. If <& is C3, then by 
differentiating (3.24) we obtain 

£>3$(A)[E, F, G] • L* = £>3$*(A)[E, F, G]. L* (4.16) 

for any symmetric tensors E,F, G,L, so we may replace $* by $ in (4.3)-(4.10), 
(4.14), and (4.15). 
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5    Smoothness of the Representations for the Coef- 
ficients 

If iß is a scalar-valued isotropic function on U, then there are scalar-valued functions 
iß, iß, iß, and iß* on appropriate subsets of R3, such that 

V>(A) = ißyA,iiA,inA) = ${iAJiAJiiA) 
=   ^(«l, a2, <z3) = V>«(4, #A* > niA*)' C5-1) 

with iß symmetric in its arguments.16 Conversely, if iß : U —> R has any one of the 
representations above, then iß is isotropic. In the statements and proofs of our the- 
orems on the smoothness of the coefficients a,ß, 7, and 6, we have regarded these 
coefficients as functions on U. Of course, since the coefficient functions are isotropic, 
they each have representations of the form (5.1). We are then faced with the ques- 
tion of whether the established smoothness of the coefficients, regarded as isotropic 
scalar-valued functions on U, is inherited by the corresponding functions in the repre- 
sentations. The answer depends on the type of smoothness considered and on which 
representation is used. The reader is referred to Ball [13] for a thorough discussion 
of the relationship between the smoothness of iß, iß, and iß. We will discuss some of 
his results below. 

The easiest case is when "smooth" is interpreted as continuous. For this case we 
have the following simple result. Continuity of any one of the five functions in (5.1) 
implies continuity of the others. To see this, note that the arguments of any one of the 
functions iß, iß, iß* can be expressed as polynomials in the arguments of the other two 
functions, so continuity of one of these functions implies continuity of the other two. 
Similarly, since the principal invariants, for example, can be expressed as symmetric 
polynomials in a1,a2,a3, continuity of iß implies continuity of iß. Conversely, since 
the unordered triple (a1,a2, a3) of eigenvalues of A is a continuous function of the 
principal invariants of A,17 continuity of iß implies continuity of iß. Since the principal 
invariants and the moments of A are continuous functions of A, continuity of any 
one of the functions iß, iß, iß* implies continuity of iß. Finally, choose any orthonormal 
basis {e1,e2,e3} for V. Then 

V>(a1? a2, a3) = ^(a^ ®e1-\- a2e2 <g> e2 + a3e3 <g> e3), (5.2) 

so continuity of xß implies continuity of iß. Therefore, Theorems 1.1, 1.3, and 2.1-2.3 

16Cf. Truesdell & Noll [4, §10] for a proof of the representations ^,V>,^. The representation ^>» 
follows from ip and the identities (2.2) and MA = ^Ij^ + IAH^ + HIA* ■ 

17As noted by Serrin [2, p. 463] and Ball [13, p. 709], this follows from the well-known fact that 
the roots of a polynomial are continuous functions of the coefficients, the polynomial in this case 
being the characteristic polynomial of A. The roots are analytic functions of the coefficients on any 
domain in which the roots remain distinct. 
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also yield sufficient conditions for the continuity of the functions in the representations 
of the coefficients a,/3,7, and6.18 

The relationship between the smoothness of a scalar-valued isotropic function 
iß on U and the smoothness of the corresponding functions in the representations 
(5.1) is more complicated when "smooth" denotes some degree of differentiability. 
We consider the simplest case first, namely, when iß (A) is expressed as a symmet- 
ric function of the eigenvalues of A: iß (A) = iß{a1,a2,az). The domain U oi iß 
is the set of all {al,a2,a3) G R3 such that aua_2,az are the eigenvalues of some 
A G U. If {a-L,a2,az) G Ü, then (aham,an) G Ü for every permutation l,m,n of 
1,2,3, and A = E3

=i
a»'e« ® e, G U for any orthonormal basis {e,} for V. Then 

As = ELi(a« + ^«')e«'®e«' G M for sufficiently small £,•, since U is open and ||A-Atf|| = 
(Ef_x ^)1/2- Hence (a1 + 61? a2 + S2, a3 + 83) G Ü for sufficiently small S{, which shows 
that Ü is an open subset of R3. Since (5.2) holds for any fixed orthonormal basis 
{e,} for V, it follows that smoothness of iß implies smoothness of iß for any reason- 
able interpretation of the term "smooth". A looser but more descriptive statement 
of this result is that if iß (A) is a smooth function of A, then iß is a smooth func- 
tion of the eigenvalues of A.19 Therefore, Theorems 1.2, 1.3, and 4.1-4.3 also yield 
sufficient conditions for the coefficients a(A),ß(A),j(A), and 9(A) to be regarded 
as Cr (r = 1,2,) functions of the eigenvalues of A. In the other direction, Ball [13, 
Theorem 5.5] proved that if iß is Cr then iß is Cr, for r = 0,1,2. He conjectured but 
could not prove that this holds for any positive integer r. However, his Theorem 5.7 
does imply the weaker result that if iß is Cr+1 then iß is Cr, for any positive integer 
r; hence iß is C°° if iß is C°°. 

The relationship between the smoothness of iß and iß is dramatically different. 
The domain of iß is the set 

Ü = {(7A,//A,//7A) :A€W}cR3. (5.3) 

Then Ü = Üx U Ü2 U U3, where 

Ün = {(IA,IIA,IIIA): A eUn}cR3. (5.4) 

Similarly, let Ün denote the set of all points (a^e^öa) € U sucn ^at n °f ^e ai 
are distinct; equivalently, (^,02,03) € Ün iff there is an A G Un with eigenvalues 
a1,a2,a3. Clearly, Ü3 is an open subset of R3. It can be shown that Uz is also an 
open subset of R3; indeed, U3 is the interior of U, whereas Ux UW2isa subset of the 

18Serrin [2] and Man [10] proceeded in the other direction. In their proofs of the continuity of the 
coefficients a, ß, 7, they regarded these coefficients as symmetric functions of the eigenvalues. 

19It is interesting to note (as did Ball [13, p. 701] in the same context) that the eigenvalues 
themselves (either regarded individually when arranged in ascending order or regarded as an un- 
ordered triple) fail to be differentiable at any A € Sym for which #A < 3, i.e., at any point in 
Sym-L U Sym2; cf. Kato [15, §11.6.4]. Thus, if if> is smooth then %l> is the composition of a smooth 
function ^:WcR3-*R with the nondifferentiable eigenvalue function A ►-»■ (ai, a2,03). 
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boundary of ZV.20 Thus, unlike U and Ü, the domain Ü of i\> is not an open set (unless 
U = U3). Since the eigenvalues of A are analytic functions of the principal invariants 
of A on the open set ZY3, the same arguments used for the case of continuity imply 
that i\> is smooth on Uz iff ip is smooth on liz iff 1} is smooth on U3. However, there 
can be a loss in the smoothness of ip at points in Ux UZY2- One complication which 
must be addressed in discussing the smoothness of 1} is the meaning to be assigned to 
the term "smooth" at these boundary points. For simplicity we now consider the case 
when U = Sym; then Ux öÜ2 is the entire boundary of U. Ififi is C3r onli = Sym (and 
hence ip is C3r onU = R3), then ip is Cr on U in the sense that there is a Cr function 
f on R3 whose restriction to U equals i}.21 In particular, if ip is C3 on U = Sym, then 
ip is C1 on U, i.e., ip(A) may be regarded as a continuously differentiable function 
of the principal invariants of A. However, the requirement that ip be C3 cannot be 
weakened to C2. For suppose that ip has the form 

V>(A) = ^(«i, a2, a3) = g(al) + g(a2) + g(a3), (5.5) 

where g : R —» R is C2 but not C3. Then ip is C2, and hence, by the theorem of Ball 
discussed in the previous paragraph, ifi is C2. But by Theorem 3.8 in Ball [13], the 
fact that g is not C3 implies that for ip of the form (5.5), the derivative of ifi cannot be 
extended continuously from the interior of U to the boundary of Ü, and hence ip fails 
to be continuously differentiable (in any reasonable sense) at the boundary of U. In 
other words, ifiß{A) is only a C2 function of A, then iß may fail to be a continuously 
differentiable function of the principal invariants of A at values of IA, JZ^, IIIx for 

which AA = 0, i.e., for which #A < 3. 
Note that none of the theorems in the previous sections yield sufficient conditions 

for the coefficients a, ß, 7, or 6 to be C3. Thus, none of our smoothness theorems 
guarantee that a, ^,7, or 9 can be regarded as continuously differentiable functions of 
the principal invariants of A. Of course, since Proposition 4.1 is valid for arbitrary r, 
it might be possible to apply the techniques of Section 4 to obtain sufficient conditions 
for the continuity of higher order derivatives of the coefficients. For r = 1,2,3, we 
have shown that if $ is Cr on U, then 6 is Cr_1 on U, and a, ß, 7 are Cr_1 on U2 U Uz 

and Cr~2 on hi. It is reasonable to conjecture that this result also holds for r > 3. 
However, a glance at the formula (4.2) for D3$* reveals that the formula for D4<&* 
will be quite messy, and it is not clear that the latter formula can be solved for D38 
of D27. Thus, even for the next simplest case, r = 4, the approach developed here 
might not be useful. 

20Cf. Ball [13, Lemma 3.2] for this and other relations between the topological properties of Ü and 
Ü. That Üi UÜ2 lies in the boundary of Ü also follows from the fact that IX,HA.,IIIA. must satisfy 
the inequality AA > 0 (cf. (1.13)), with AA = 0 iff A € Hi UU2. 

21Ball [13] attributes this result to Barbancon (1972). The result also follows from Theorem 3.2 
in Ball's paper, which applies to more general (but not arbitrary) open invariant subsets U of Sym; 
cf. the discussion on pp. 700 and 705-706. 
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6    Proof of Proposition 4.1 

Our proof of Proposition 4.1 employs Propositions 6.1 and 6.2 below. We begin 
with some definitions and results which are useful for a concise statement and proof 
of Proposition 6.1. Let Orth denote the set of orthogonal tensors. The orbit of a 
symmetric tensor A is {QAQT : Q G Orth}. Thus the orbit of A is the smallest 
invariant subset of Sym which contains A; and U C Sym is invariant iff U contains 
the orbit of every A € U. By an orbit of the invariant set U we mean a subset of U 
which is the orbit of some A eU. Then U is the union of its orbits, and each orbit 
of U lies in one the the invariant subsets UxMiMz- A scalar-valued or tensor-valued 
function on U is isotropic iff its restriction to each orbit is isotropic. In particular, a 
scalar-valued function on U is isotropic iff it is constant on every orbit of U. 

Consider a scalar-valued isotropic function 4> on U. Let Tr(Sym) denote the space 
of (covariant) tensors of order r on Sym, i.e., the space of all multilinear maps from 
Sym x • • • x Sym (r times) into R. If tj) is r-times differentiable at the point A G K, 
then DrV>(A) G TT(Sym). Let Ü denote the set of all points in U at which ^ is r-times 
differentiable, and let *r = Drip : Ü -> TT(Sym). Then it is not hard to show that Ü 
is an invariant subset of U and 

*r(QAQT)[QExQ
T,..., QErQ

T] = *r(A)[El5..., Er] (6.1) 

for each A G Ü and each Q G Orth; here and below, Ex,...,Er denote arbitrary 
symmetric tensors.22 

Now consider any invariant subset Ü of Sym and an arbitrary function *r : U —> 
Tr(Sym). We say that *r is isotropic on Ü if (6.1) holds. This is consistent with our 
previous use of the term for functions from U into Sym. To see this, note that any 
B G T^Sym) (the space of all linear functions from Sym into R) can be identified 
with a unique B G Sym via the canonical isomorphism B[E] = B>E. Thus any 
function ^ : Ü —> Sym may be identified with a function *! : U —> T^Sym). And if 
the latter function is isotropic in the sense of (6.1), we have 

Q^^QAQ^QE   =   ^(QAQ^.QEQ^^QAQ/HQEQ/] 

=   *1(A)[E] = *1(A).E. 

Since this holds for every symmetric tensor E, it follows that QT*X(QAQT)Q = 
*i(A) and therefore *X(QAQT) = Q*!(A)QT, i.e., *a is an isotropic tensor-valued 
function as defined in the Introduction.23   Similarly, if we set T0(Sym) = R and 

22 Also, if *r = Drip then *r(A) is a symmetric tensor of order r on Sym, i.e., *r[Ei,..., Er] = 
*r[E(7(i),..., E^r)] for any permutation a of 1,..., r; cf. (8.12.4) in Dieudonne [9]. However, this 
property of *r is not used for any of the results in this section. 

23A similar argument shows that if Ü is the set of all points where the isotropic tensor-valued 
function $ : U —► Sym is r - 1 times differentiable, then £>r_1* may be identified with an isotropic 
function *r : Ü —► %{Sym). 
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interpret (6.1) for r — 0 as the condition *0(QAQT) = 15r
0(A), then ty0 is a scalar- 

valued isotropic function. 
From (6.1) it follows that ^r : U —» Tr(Sym) is isotropic iff its restriction to each 

orbit of Ü is isotropic. By setting Q = RT and A = RBR in (6.1), we see that 
isotropy of *Pr implies 

*r(RBRT)[E1?..., Er] = *r(B)[RTE1R,..., RTErR] (6.2) 

for any B G Ü and any R G Orth. Conversely, if for every orbit of U there is at least 
one tensor B in the orbit for which (6.2) holds for each R G Orth, then *Pr is isotropic. 
For if A is any tensor in the orbit of B then A = QBQ for some Q G Orth, so for 
any Q G Orth we have 

*r(QAQT)[...,QEfcQ
T,...]   = *r((QQ)B(QQ)T)[...,QEfcQ

T,...] 

= *P(B)[..., (QQ)T(QEfcQ
T)(QQ),...] 

= *r(B)[...,QTEfcQ,...] 

= *r(QBQT)[...,Efc,...] 

= *r(A)[...,Efc,...], 

where the second equality follows from (6.2) with R = QQ and Efc —> QEfcQ
T, and 

the fourth equality follows from (6.2) with R = Q. Given the value of S&r at some 
point B, we can use (6.2) to extend &r to an isotropic function on the orbit of B. 

Recall that the set Z/<{e,-} C Uz f) 5{e,} consists of all A = £f=1 a,e,- <g> e, G U for 
which a1 < a2 < a3. 

Proposition 6.1 If^r : £/3 —> Tr(Sym) is continuous and isotropic on U3) then 
the following conditions are equivalent: 

(1) *Pr has a continuous extension *&r to U; 

(2) VB G Ut U U2, the lim *r(A) exists; 
A-+B 
A€W3 

(3) VB G Ux U U2) each principal basis {e,} for B, and any E1;...,Er G Sym, 
the       lim    *r(A)[El5... ,Er] exists. 

A-+B 

A€«3nS{e,} 

(4) for each orbit of Ux U U2 there is some B in the orbit and some principal basis 
{el5e2,e3} for B corresponding to the ordered eigenvalues bx<b2< b3 of B, 
such that the     lim   ^r(A)[El5..., Er] exists for any El5..., Er G Sym. 

A-+B 
AGW3<{e,} 

When these conditions hold, \Fr is unique and isotropic on U. 
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Proof: As in the proof of Proposition 2.1, the equivalence of (1) and (2), and the 
uniqueness *r, follows from the fact that K3 is dense in U; and clearly (2) =$■ (3) => 
(4). So assume (4) holds. By the linearity of *r, (4) implies that limA_B*r(A), 
A G ^{e,}, exists. Let *r(B) G Tr(Sym) denote the value of this limit. Extend 

*r to an isotropic function on the orbit of B by (6.2) with &T in place of *r. If B 
lies in the orbit of B then B = £?=1 6,-e,- <g> e, for some orthonormal basis {e,}. Let 

{An} (n = 1,2,...) be any sequence in Uz converging to B. Let Y%-x 
ai,nei,n®ei,n, 

with a1)B < a2jn < a3,„, be a spectral decomposition of An; then ain —> 6t- (i = 
1,2,3) by the continuity of the ordered eigenvalues. Let Q„ be the orthogonal 
tensor which maps ei)B to e, (i = 1,2,3). Then QBABQn = £j=1 a,,Be,- ®e; € 
£/<{eJ, and since a,)B -* bt it follows that QBABQn -> B. Thus (4) implies that 

*r(QBAnQ^)[E1,..., Er] -» *r(B)[El5..., Er] for any El5..., Er, and hence that 
*r(QBABQn) -» *r(B). Now the sequence {Qn} need not converge, but since 
Orth is compact there is a subsequence {QBfc} such that QBfc -> Q^ G Orth. Then 
QnkAnkQ

T
nk -» QooBQ^ since ABfc -» B. And since QBABQn -+ B, we also have 

QBfcABfcQ;k - B. Therefore B = Q^BQ^, and 

^(A^)^,...,^]   =   *r(Q»lkAnjkQ^)[Qf,lkE1Qi]k,...,QBtErQ^] 

->   *r(B)[Q00E1Q^,...,Q0OEPQ^] 

=   *r(Q0oBQj[Q00E1Q^,...,Q00EPQ^] 

=     ^(^([E!,...,^]), 

where the first equality follows from the isotropy of *r on U3, and the last equal- 
ity from the isotropy of *r on the orbit of B. We have shown that for every 
sequence {AB} in Uz converging to B, there is a subsequence {Ank} such that 
9r(A„k)[Eu..., Er] converges to *r(B)[E!,..., Er]. It follows that 

lim *r(A)[E1,...,Er] = *r(B)[E1,...,Er] 

Ae% 

for any symmetric tensors E1;..., Er. Thus limA_ö *r(A), A G W3, exists and equals 
4fr(B). Since B was an arbitrary point in an arbitrary orbit of Ux U U2, condition (2) 
holds. Since *r is isotropic on each orbit of Ux U U2, it is isotropic on Ux U U2. So if 
we set 4?r = 9r on U3, then 4fr is a continuous isotropic extension of *r to U.    □ 

As discussed above, *r is just a scalar-valued isotropic function when r = 0, so 
Proposition 2.1 also follows from Proposition 6.1.24 Here we are primarily interested 
in the case r > 1 with *&r = Drip for some scalar-valued isotropic function ip on 

24Note that condition (4) in Proposition 6.1 (which for r = 0 is obtained by omitting the 
Ei,..., Er) is weaker than (4) of Proposition 2.1. 
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Uz. Then Proposition 6.1 yields sufficient conditions for the existence of a continuous 
extension of this rth-order derivative from Uz to U. It is tempting to conclude that 
the existence of such an extension, together with the assumption that iß is Cr_1 on 
M, implies that i\) is Cr on U. This is not true in general, that is, it would not be 
true if Uz was just an arbitrary open dense subset of ZV.25 The conclusion is true for 
the case considered here because the set U — Uz = ZYa U U2 of all tensors in U with 
at least two equal eigenvalues is sufficiently nice. Of course, this requires some proof. 
Fortunately, the result we need has been established by Ball.26 

Proposition 6.2 (Ball [13]) Letr > 1 and let & be a (not necessarily Isotropie) 
Cr_1 function from U into Rn. If *& is Cr on Uz, and if Dri& has a continuous 
extension to U, then *& is Cr onU. 

Then Proposition 4.1 follows from Proposition 6.2 (with * = Vs n = 1) and Propo- 
sition 6.1 (with *r = Drip). 

25As pointed out by Ball [13, §2], the Cantor function provides a counterexample for r = 1. 
26The result stated here follows from the much more general Proposition 2.2 in Ball's paper, 

together with the fact (which is proved on p. 714 of his paper) that Syml U Sym2 is closed and 
sparse (cf. his Definition 2.1). 
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